- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Gallazzi, Fabio (3)
-
Glaser, Rainer (2)
-
Yang, Kaidi (2)
-
Arens, Christina (1)
-
King, Gavin M. (1)
-
Kosztin, Ioan (1)
-
Marsh, Brendan P. (1)
-
Matin, Tina R. (1)
-
Schell, Joseph (1)
-
Sigdel, Krishna P. (1)
-
Smith, Virginia F. (1)
-
Utjesanovic, Milica (1)
-
Wycoff, Wei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Yang, Kaidi; Schell, Joseph; Gallazzi, Fabio; Wycoff, Wei; Glaser, Rainer (, ChemPhysChem)Abstract We have been interested in the development of rubisco‐based biomimetic systems for reversible CO2capture from air. Our design of the chemical CO2capture and release (CCR) system is informed by the understanding of the binding of the activator CO2(ACO2) in rubisco (ribulose‐1,5‐bisphosphate carboxylase/oxygenase). The active site consists of the tetrapeptide sequence Lys‐Asp‐Asp‐Glu (or KDDE) and the Lys sidechain amine is responsible for the CO2capture reaction. We are studying the structural chemistry and the thermodynamics of CO2capture based on the tetrapeptide CH3CO−KDDE−NH2(“KDDE”) in aqueous solution to develop rubisco mimetic CCR systems. Here, we report the results of1H NMR and13C NMR analyses of CO2capture by butylamine and by KDDE. The carbamylation of butylamine was studied to develop the NMR method and with the protocol established, we were able to quantify the oligopeptide carbamylation at much lower concentration. We performed a pH profile in the multi equilibrium system and measured amine species and carbamic acid/carbamate species by the integration of1H NMR signals as a function of pH in the range 8≤pH≤11. The determination of ΔG1(R) for the reaction R−NH2+CO2R−NH−COOH requires the solution of a multi‐equilibrium equation system, which accounts for the dissociation constantsK2andK3controlling carbonate and bicarbonate concentrations, the acid dissociation constantK4of the conjugated acid of the amine, and the acid dissociation constantK5of the alkylcarbamic acid. We show how the multi‐equilibrium equation system can be solved with the measurements of the daughter/parent ratioX, the knowledge of the pH values, and the initial concentrations [HCO3−]0and [R‐NH2]0. For the reaction energies of the carbamylations of butylamine and KDDE, our best values are ΔG1(Bu)=−1.57 kcal/mol and ΔG1(KDDE)=−1.17 kcal/mol. Both CO2capture reactions are modestly exergonic and thereby ensure reversibility in an energy‐efficient manner. These results validate the hypothesis that KDDE‐type oligopeptides may serve as reversible CCR systems in aqueous solution and guide designs for their improvement.more » « less
-
Matin, Tina R.; Sigdel, Krishna P.; Utjesanovic, Milica; Marsh, Brendan P.; Gallazzi, Fabio; Smith, Virginia F.; Kosztin, Ioan; King, Gavin M. (, Langmuir)
An official website of the United States government
